Chapter 1 - Notation and Review of
Newton’s Laws

E. 2D polar coordinates
e Polar unit vectors and their derivatives
* Newton's 2nd Law in polar coordinates
F. 3D Cylindrical coordinates
e Cylindrical unit vectors and their derivatives
e Newton’s 2nd Law in cylindrical coordinates

PHYS 342 Analytical Mechanics - Chapter 1 1



E. 2D Polar Coordinates
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2D Polar Coordinates

Polar coordinates (r, ¢) use the radial distance r from the origin and the

angle ¢ from the positive x axis and coordinates.
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Transformation equations between Cartesian coordinates (x,y) and Polar
Coordinates (7, ¢):

(r,¢) — (x,) x,y) — (1, ¢)
X = rcos¢ r=\/x2+y2
y =rsing¢ ¢ = arctan(y/x)
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2D Polar Coordinates

As in Cartesian coordinates, polar unit vectors point in the direction that
the corresponding coordinate increases.

e the r unit vector 7 points radially outward from the origin

e the ¢ unit vector qg points counter-clockwise in the direction of
increasing ¢

Polar Unit Vectors
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2D Polar Coordinates

Unlike Cartesian unit vectors, the Direction of # and ¢ change as
one moves in the (x,y) plane.

partiéle
path

Imagine following the dotted path. The (7, ¢) unit vectors
continuously change direction as time passes.
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2D Polar Coordinates

We can use trig to write down Solve for

expressions for r and ¢ in terms of - —
~ A : : : n y I = COS X + Sin

X and y. Consider point P in the & ¢y ¢ Py

diagram below:

e
>
~
<
-

o ¢? ........................ AY </3=—sinc/§§<+cosq§§r

)

r

> ¥

PHYS 342 Analytical Mechanics - Chapter 1 6



2D Polar Coordinates

Goal: Calculate the velocity v of an object in polar coordinates.
V=TI= E(rf) (we substituted r =rt)

Because the polar unit vectors rotate as a given point moves in the

plane, we cannot treat I as a constant in this equation. Thus, using
the product rule, we have

I =7rr+7ir

In order to proceed we need to calculate the time derivative of each
unit vector:

. dt . h
Iy, 5=

dt dt

=7
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2D Polar Coordinates

Time derivative of r

Start with T = cos ¢X + sin ¢y
. dr d
Differentiate: ¢ = — COSs @YX + sin @y
dt dt [ ? ¢y]

[— sin ¢X + cos qby] ¢

= ¢ \ We see this expression is what we

derived for ¢ two slides ago:
¢ = — sin ¢pX + cos ¢y

ThUS, f' = ¢q§

Similarly, the time derivative of 43 is

b = — gt
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2D Polar Coordinates

We can now evaluate the velocity vector in polar coordinates

V=r=ift+rf Vi o v
=it + r(pp) (use T =) VVA/W
v =it + rd r

The velocity has two orthogonal components:

V=7 radial velocity component

vy = r¢ = ro tangential velocity component, where o = ¢ is
the angular velocity
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2D Polar Coordinates

The acceleration vector in polar coordinates is found similarly:

a=v= % [i’f‘ + rgbg[3] Y4 %
— <if‘f'+iff') + <(fq§+rq’z5>q§+rq§$> ) a
s (i) (e 209) 4

The acceleration has two orthogonal components:

a,=¥—r¢*  radial acceleration (note: ré* is the centripetal acc.)

a, = r¢ +2i¢p  azimuthal (or tangential) acceleration
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Newton’s second law in polar coordinates

Newton’s second law:

F =ma
Write force and acceleration vectors in terms of polar components:
F=F,,f'+F¢q$ a=arf°+a¢q§ where a, = ¥ — r¢?

ay = rep + 2igh

Equate radial and azimuthal components:

radial (r): F.=ma, —» |F =m (,, _ 7452>

azimuthal (p): Fy=ma, —> Fy=m (7’45 + 2"’(/.)>
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Example: Motion on a Circle

Mass m is constrained to move on a circle
with fixed radius r.

a) Write down Newton's 2nd law in polar
coordinates given this constraint.

b) Assume the angular position as a function of
time is ¢(f) = at>, where a has units of
rad/s>. Solve for the radial and azimuthal

force components acting on the particle to
P g P
produce this motion.

Try it on your own. The solution is on the next 2 slides.
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Example: Motion on a Circle

a) Write down Newton’s 2nd law in polar
coordinates assuming the motion is constrained to

move in a circle with radius r.

Solution.

Newton’s 2nd law in polar coordinates:  F,=m (i”' - r¢52)

Because the particle can not move in the radial direction, both 7 = 0 and
¥ = 0. We can remove those terms from the F=ma equation:

. - Centripetal force keeping

_ 02 :

F,=m (\ r > » F.=—mr¢? = particle on circular path

Fy=m (rqb + 2X¢> Fy=mr¢ 2 Azimuthal force driving
v rotational acceleration
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Example: Motion on a Circle

b) the angular position as a function of time is ¢(¢) = at’,
where a has units of rad/s>. Solve for the radial and azimuthal
force components acting on the particle to produce this
m

motion.

Solution.

We apply the result from the previous slide: F, = — mr¢?
F¢ — mr&

We evaluate the derivatives: Plug into the F=ma equations above:

4 (ar?) = 3ar®
7 N
2
) = % (dt3) = 6at Fy = mr(6at) = 6bmart v
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F. 3D Cylindrical Coordinates
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3D Cylindrical Coordinates

Cylindrical Coordinates:

z = height above the x-y plane
p = distance from the origin projected on the x-y plane
¢ = angle measured from positive x axis

p Transformation equations:

p,h,20) — (x,,2)

X =pcosq¢
y=psing
w =L 2=12
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3D Cylindrical Coordinate Unit Vectors

Cylindrical Coordinate Unit Vectors:

Z = points upward, perpendicular to the x-y plane
p = points outward from origin in the x-y plane
g$ = azimuthal direction in the x-y plane
//
¢? A
PN 5P Cylindrical Unit Vectors and their derivatives:
) r p=XCoSq@+ ysing Ié=q§¢
¢ =—Xsing + ycos ¢ $=—¢ﬁ
2 — —

Z 2=0
3 y
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Newton’s Second Law in Cylindrical Coordinates

We follow method for deriving Newton'’s second law for polar
coordinates. The result is:

radial (p): F,=ma, —» |F,=m <’p‘ —p¢52>
azimuthal (¢): Fy=ma, — |F,=m (p¢ + zpqﬁ)
vertical (2): F,=ma, —> | F,=mZ
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